Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
J Cell Biol ; 223(6)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38709216

Autophagy is an essential degradation program required for cell homeostasis. Among its functions is the engulfment and destruction of cytosolic pathogens, termed xenophagy. Not surprisingly, many pathogens use various strategies to circumvent or co-opt autophagic degradation. For poxviruses, it is known that infection activates autophagy, which however is not required for successful replication. Even though these complex viruses replicate exclusively in the cytoplasm, autophagy-mediated control of poxvirus infection has not been extensively explored. Using the prototypic poxvirus, vaccinia virus (VACV), we show that overexpression of the xenophagy receptors p62, NDP52, and Tax1Bp1 restricts poxvirus infection. While NDP52 and Tax1Bp1 were degraded, p62 initially targeted cytoplasmic virions before being shunted to the nucleus. Nuclear translocation of p62 was dependent upon p62 NLS2 and correlated with VACV kinase mediated phosphorylation of p62 T269/S272. This suggests that VACV targets p62 during the early stages of infection to avoid destruction and further implies that poxviruses exhibit multi-layered control of autophagy to facilitate cytoplasmic replication.


Autophagy , Cell Nucleus , Sequestosome-1 Protein , Vaccinia virus , Humans , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Cell Nucleus/virology , HEK293 Cells , HeLa Cells , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Phosphorylation , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Vaccinia/metabolism , Vaccinia/virology , Vaccinia/genetics , Vaccinia virus/metabolism , Vaccinia virus/genetics , Virus Replication
2.
Sci Data ; 11(1): 232, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38395957

High-content image-based screening is widely used in Drug Discovery and Systems Biology. However, sample preparation artefacts may significantly deteriorate the quality of image-based screening assays. While detection and circumvention of such artefacts could be addressed using modern-day machine learning and deep learning algorithms, this is widely impeded by the lack of suitable datasets. To address this, here we present a purpose-created open dataset of high-content microscopy sample preparation artefact. It consists of high-content microscopy of laboratory dust titrated on fixed cell culture specimens imaged with fluorescence filters covering the complete spectral range. To ensure this dataset is suitable for supervised machine learning tasks like image classification or segmentation we propose rule-based annotation strategies on categorical and pixel levels. We demonstrate the applicability of our dataset for deep learning by training a convolutional-neural-network-based classifier.


Artifacts , Deep Learning , Microscopy , Algorithms , Image Processing, Computer-Assisted/methods , Neural Networks, Computer
3.
mSphere ; 9(2): e0059123, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38334404

Machine learning and artificial intelligence (AI) are becoming more common in infection biology laboratories around the world. Yet, as they gain traction in research, novel frontiers arise. Novel artificial intelligence algorithms are capable of addressing advanced tasks like image generation and question answering. However, similar algorithms can prove useful in addressing advanced questions in infection biology like prediction of host-pathogen interactions or inferring virus protein conformations. Addressing such tasks requires large annotated data sets, which are often scarce in biomedical research. In this review, I bring together several successful examples where such tasks were addressed. I underline the importance of formulating novel AI tasks in infection biology accompanied by freely available benchmark data sets to address these tasks. Furthermore, I discuss the current state of the field and potential future trends. I argue that one such trend involves AI tools becoming more versatile.


Artificial Intelligence , Biomedical Research , Algorithms , Machine Learning , Biology
4.
Microbiol Spectr ; 12(4): e0407223, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38376353

We previously identified the bisbenzimide Hoechst 33342 (H42) as a potent multi-stage inhibitor of the prototypic poxvirus, the vaccinia virus (VACV), and several parapoxviruses. A recent report showed that novel bisbenzimide compounds similar in structure to H42 could prevent human cytomegalovirus replication. Here, we assessed whether these compounds could also serve as poxvirus inhibitors. Using virological assays, we show that these bisbenzimide compounds inhibit VACV spread, plaque formation, and the production of infectious progeny VACV with relatively low cell toxicity. Further analysis of the VACV lifecycle indicated that the effective bisbenzimide compounds had little impact on VACV early gene expression but inhibited VACV late gene expression and truncated the formation of VACV replication sites. Additionally, we found that bisbenzimide compounds, including H42, can inhibit both monkeypox and a VACV mutant resistant to the widely used anti-poxvirus drug TPOXX (Tecovirimat). Therefore, the tested bisbenzimide compounds were inhibitors of both prototypic and pandemic potential poxviruses and could be developed for use in situations where anti-poxvirus drug resistance may occur. Additionally, these data suggest that bisbenzimide compounds may serve as broad-activity antiviral compounds, targeting diverse DNA viruses such as poxviruses and betaherpesviruses.IMPORTANCEThe 2022 mpox (monkeypox) outbreak served as a stark reminder that due to the cessation of smallpox vaccination over 40 years ago, most of the human population remains susceptible to poxvirus infection. With only two antivirals approved for the treatment of smallpox infection in humans, the need for additional anti-poxvirus compounds is evident. Having shown that the bisbenzimide H33342 is a potent inhibitor of poxvirus gene expression and DNA replication, here we extend these findings to include a set of novel bisbenzimide compounds that show anti-viral activity against mpox and a drug-resistant prototype poxvirus mutant. These results suggest that further development of bisbenzimides for the treatment of pandemic potential poxviruses is warranted.


Poxviridae , Smallpox , Humans , Bisbenzimidazole/metabolism , Pandemics , Vaccinia virus/genetics
5.
Sci Data ; 11(1): 155, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38302487

Urinary tract infection (UTI) is a common disorder. Its diagnosis can be made by microscopic examination of voided urine for markers of infection. This manual technique is technically difficult, time-consuming and prone to inter-observer errors. The application of computer vision to this domain has been slow due to the lack of a clinical image dataset from UTI patients. We present an open dataset containing 300 images and 3,562 manually annotated urinary cells labelled into seven classes of clinically significant cell types. It is an enriched dataset acquired from the unstained and untreated urine of patients with symptomatic UTI using a simple imaging system. We demonstrate that this dataset can be used to train a Patch U-Net, a novel deep learning architecture with a random patch generator to recognise urinary cells. Our hope is, with this dataset, UTI diagnosis will be made possible in nearly all clinical settings by using a simple imaging system which leverages advanced machine learning techniques.


Deep Learning , Urinary Tract Infections , Humans , Diagnostic Tests, Routine , Machine Learning , Microscopy , Urinary Tract Infections/diagnosis , Urinary Tract Infections/drug therapy , Urinary Tract Infections/urine
7.
J Med Internet Res ; 25: e45767, 2023 09 19.
Article En | MEDLINE | ID: mdl-37725432

BACKGROUND: While scientific knowledge of post-COVID-19 condition (PCC) is growing, there remains significant uncertainty in the definition of the disease, its expected clinical course, and its impact on daily functioning. Social media platforms can generate valuable insights into patient-reported health outcomes as the content is produced at high resolution by patients and caregivers, representing experiences that may be unavailable to most clinicians. OBJECTIVE: In this study, we aimed to determine the validity and effectiveness of advanced natural language processing approaches built to derive insight into PCC-related patient-reported health outcomes from social media platforms Twitter and Reddit. We extracted PCC-related terms, including symptoms and conditions, and measured their occurrence frequency. We compared the outputs with human annotations and clinical outcomes and tracked symptom and condition term occurrences over time and locations to explore the pipeline's potential as a surveillance tool. METHODS: We used bidirectional encoder representations from transformers (BERT) models to extract and normalize PCC symptom and condition terms from English posts on Twitter and Reddit. We compared 2 named entity recognition models and implemented a 2-step normalization task to map extracted terms to unique concepts in standardized terminology. The normalization steps were done using a semantic search approach with BERT biencoders. We evaluated the effectiveness of BERT models in extracting the terms using a human-annotated corpus and a proximity-based score. We also compared the validity and reliability of the extracted and normalized terms to a web-based survey with more than 3000 participants from several countries. RESULTS: UmlsBERT-Clinical had the highest accuracy in predicting entities closest to those extracted by human annotators. Based on our findings, the top 3 most commonly occurring groups of PCC symptom and condition terms were systemic (such as fatigue), neuropsychiatric (such as anxiety and brain fog), and respiratory (such as shortness of breath). In addition, we also found novel symptom and condition terms that had not been categorized in previous studies, such as infection and pain. Regarding the co-occurring symptoms, the pair of fatigue and headaches was among the most co-occurring term pairs across both platforms. Based on the temporal analysis, the neuropsychiatric terms were the most prevalent, followed by the systemic category, on both social media platforms. Our spatial analysis concluded that 42% (10,938/26,247) of the analyzed terms included location information, with the majority coming from the United States, United Kingdom, and Canada. CONCLUSIONS: The outcome of our social media-derived pipeline is comparable with the results of peer-reviewed articles relevant to PCC symptoms. Overall, this study provides unique insights into patient-reported health outcomes of PCC and valuable information about the patient's journey that can help health care providers anticipate future needs. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1101/2022.12.14.22283419.


COVID-19 , Social Media , Humans , Natural Language Processing , Reproducibility of Results , Fatigue , Patient Reported Outcome Measures
8.
Sci Rep ; 13(1): 12275, 2023 Jul 28.
Article En | MEDLINE | ID: mdl-37507452

Three-dimensional information is crucial to our understanding of biological phenomena. The vast majority of biological microscopy specimens are inherently three-dimensional. However, conventional light microscopy is largely geared towards 2D images, while 3D microscopy and image reconstruction remain feasible only with specialised equipment and techniques. Inspired by the working principles of one such technique-confocal microscopy, we propose a novel approach to 3D widefield microscopy reconstruction through semantic segmentation of in-focus and out-of-focus pixels. For this, we explore a number of rule-based algorithms commonly used for software-based autofocusing and apply them to a dataset of widefield focal stacks. We propose a computation scheme allowing the calculation of lateral focus score maps of the slices of each stack using these algorithms. Furthermore, we identify algorithms preferable for obtaining such maps. Finally, to ensure the practicality of our approach, we propose a surrogate model based on a deep neural network, capable of segmenting in-focus pixels from the out-of-focus background in a fast and reliable fashion. The deep-neural-network-based approach allows a major speedup for data processing making it usable for online data processing.

9.
ArXiv ; 2023 Mar 07.
Article En | MEDLINE | ID: mdl-36945686

Through digital imaging, microscopy has evolved from primarily being a means for visual observation of life at the micro- and nano-scale, to a quantitative tool with ever-increasing resolution and throughput. Artificial intelligence, deep neural networks, and machine learning are all niche terms describing computational methods that have gained a pivotal role in microscopy-based research over the past decade. This Roadmap is written collectively by prominent researchers and encompasses selected aspects of how machine learning is applied to microscopy image data, with the aim of gaining scientific knowledge by improved image quality, automated detection, segmentation, classification and tracking of objects, and efficient merging of information from multiple imaging modalities. We aim to give the reader an overview of the key developments and an understanding of possibilities and limitations of machine learning for microscopy. It will be of interest to a wide cross-disciplinary audience in the physical sciences and life sciences.

10.
Front Bioinform ; 2: 912809, 2022.
Article En | MEDLINE | ID: mdl-36304285

Open-source research software has proven indispensable in modern biomedical image analysis. A multitude of open-source platforms drive image analysis pipelines and help disseminate novel analytical approaches and algorithms. Recent advances in machine learning allow for unprecedented improvement in these approaches. However, these novel algorithms come with new requirements in order to remain open source. To understand how these requirements are met, we have collected 50 biomedical image analysis models and performed a meta-analysis of their respective papers, source code, dataset, and trained model parameters. We concluded that while there are many positive trends in openness, only a fraction of all publications makes all necessary elements available to the research community.

11.
Sci Data ; 9(1): 610, 2022 10 08.
Article En | MEDLINE | ID: mdl-36209289

Viruses are genetically and structurally diverse, and outnumber cells by orders of magnitude. They can cause acute and chronic infections, suppress, or exacerbate immunity, or dysregulate survival and growth of cells. To identify chemical agents with pro- or antiviral effects we conducted arrayed high-content image-based multi-cycle infection screens of 1,280 mainly FDA-approved compounds with three human viruses, rhinovirus (RV), influenza A virus (IAV), and herpes simplex virus (HSV) differing in genome organization, composition, presence of an envelope, and tropism. Based on Z'-factors assessing screening quality and Z-scores ranking individual compounds, we identified potent inhibitors and enhancers of infection: the RNA mutagen 5-Azacytidine against RV-A16; the broad-spectrum antimycotic drug Clotrimazole inhibiting IAV-WSN; the chemotherapeutic agent Raltitrexed blocking HSV-1; and Clobetasol enhancing HSV-1. Remarkably, the topical antiseptic compound Aminacrine, which is clinically used against bacterial and fungal agents, inhibited all three viruses. Our data underscore the versatility and potency of image-based, full cycle virus propagation assays in cell-based screenings for antiviral agents.


Anti-Infective Agents, Local , Herpes Simplex , Influenza A virus , Aminacrine/therapeutic use , Anti-Infective Agents, Local/therapeutic use , Antiviral Agents/pharmacology , Azacitidine/therapeutic use , Clobetasol/therapeutic use , Clotrimazole/therapeutic use , Herpes Simplex/drug therapy , Humans , Mutagens/therapeutic use , Rhinovirus
12.
Aging (Albany NY) ; 14(4): 1665-1677, 2022 02 25.
Article En | MEDLINE | ID: mdl-35217630

C. elegans is an established model organism for studying genetic and drug effects on aging, many of which are conserved in humans. It is also an important model for basic research, and C. elegans pathologies is a new emerging field. Here we develop a proof-of-principal convolutional neural network-based platform to segment C. elegans and extract features that might be useful for lifespan prediction. We use a dataset of 734 worms tracked throughout their lifespan and classify worms into long-lived and short-lived. We designed WormNet - a convolutional neural network (CNN) to predict the worm lifespan class based on young adult images (day 1 - day 3 old adults) and showed that WormNet, as well as, InceptionV3 CNN can successfully classify lifespan. Based on U-Net architecture we develop HydraNet CNNs which allow segmenting worms accurately into anterior, mid-body and posterior parts. We combine HydraNet segmentation, WormNet prediction and the class activation map approach to determine the segments most important for lifespan classification. Such a tandem segmentation-classification approach shows the posterior part of the worm might be more important for classifying long-lived worms. Our approach can be useful for the acceleration of anti-aging drug discovery and for studying C. elegans pathologies.


Caenorhabditis elegans , Longevity , Aging , Animals , Caenorhabditis elegans/genetics , Longevity/genetics , Neural Networks, Computer
13.
Patterns (N Y) ; 3(2): 100448, 2022 Feb 11.
Article En | MEDLINE | ID: mdl-35169757

In searching for SARS-CoV variants-of-concern, pathogen sequencing is generating an impressive amount of data. However, beyond epidemiological use, these data contain cues fundamental to our understanding of pathogen evolution in the human population. Yet, to harness them, further development of computational methodology, such as machine learning, may be required. This preview discusses updates in machine learning to understand emerging pathogens.

15.
Patterns (N Y) ; 2(12): 100383, 2021 Dec 10.
Article En | MEDLINE | ID: mdl-34950904

Recent advances in biomedical machine learning demonstrate great potential for data-driven techniques in health care and biomedical research. However, this potential has thus far been hampered by both the scarcity of annotated data in the biomedical domain and the diversity of the domain's subfields. While unsupervised learning is capable of finding unknown patterns in the data by design, supervised learning requires human annotation to achieve the desired performance through training. With the latter performing vastly better than the former, the need for annotated datasets is high, but they are costly and laborious to obtain. This review explores a family of approaches existing between the supervised and the unsupervised problem setting. The goal of these algorithms is to make more efficient use of the available labeled data. The advantages and limitations of each approach are addressed and perspectives are provided.

16.
Infect Drug Resist ; 14: 3319-3326, 2021.
Article En | MEDLINE | ID: mdl-34456575

The research of interactions between the pathogens and their hosts is key for understanding the biology of infection. Commencing on the level of individual molecules, these interactions define the behavior of infectious agents and the outcomes they elicit. Discovery of host-pathogen interactions (HPIs) conventionally involves a stepwise laborious research process. Yet, amid the global pandemic the urge for rapid discovery acceleration through the novel computational methodologies has become ever so poignant. This review explores the challenges of HPI discovery and investigates the efforts currently undertaken to apply the latest machine learning (ML) and artificial intelligence (AI) methodologies to this field. This includes applications to molecular and genetic data, as well as image and language data. Furthermore, a number of breakthroughs, obstacles, along with prospects of AI for host-pathogen interactions (HPI), are discussed.

17.
iScience ; 24(6): 102543, 2021 Jun 25.
Article En | MEDLINE | ID: mdl-34151222

Imaging across scales reveals disease mechanisms in organisms, tissues, and cells. Yet, particular infection phenotypes, such as virus-induced cell lysis, have remained difficult to study. Here, we developed imaging modalities and deep learning procedures to identify herpesvirus and adenovirus (AdV) infected cells without virus-specific stainings. Fluorescence microscopy of vital DNA-dyes and live-cell imaging revealed learnable virus-specific nuclear patterns transferable to related viruses of the same family. Deep learning predicted two major AdV infection outcomes, non-lytic (nonspreading) and lytic (spreading) infections, up to about 20 hr prior to cell lysis. Using these predictive algorithms, lytic and non-lytic nuclei had the same levels of green fluorescent protein (GFP)-tagged virion proteins but lytic nuclei enriched the virion proteins faster, and collapsed more extensively upon laser-rupture than non-lytic nuclei, revealing impaired mechanical properties of lytic nuclei. Our algorithms may be used to infer infection phenotypes of emerging viruses, enhance single cell biology, and facilitate differential diagnosis of non-lytic and lytic infections.

18.
Life Sci Alliance ; 4(8)2021 08.
Article En | MEDLINE | ID: mdl-34145027

Poxvirus egress is a complex process whereby cytoplasmic single membrane-bound virions are wrapped in a cell-derived double membrane. These triple-membrane particles, termed intracellular enveloped virions (IEVs), are released from infected cells by fusion. Whereas the wrapping double membrane is thought to be derived from virus-modified trans-Golgi or early endosomal cisternae, the cellular factors that regulate virus wrapping remain largely undefined. To identify cell factors required for this process the prototypic poxvirus, vaccinia virus (VACV), was subjected to an RNAi screen directed against cellular membrane-trafficking proteins. Focusing on the endosomal sorting complexes required for transport (ESCRT), we demonstrate that ESCRT-III and VPS4 are required for packaging of virus into multivesicular bodies (MVBs). EM-based characterization of MVB-IEVs showed that they account for half of IEV production indicating that MVBs are a second major source of VACV wrapping membrane. These data support a model whereby, in addition to cisternae-based wrapping, VACV hijacks ESCRT-mediated MVB formation to facilitate virus egress and spread.


ATPases Associated with Diverse Cellular Activities/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Vaccinia virus/pathogenicity , Vacuolar Proton-Translocating ATPases/metabolism , Cell Line , Endosomes/virology , HeLa Cells , Humans , THP-1 Cells , Vaccinia virus/genetics , Viral Genome Packaging , Virus Release
19.
mSphere ; 5(5)2020 09 09.
Article En | MEDLINE | ID: mdl-32907956

The use of deep neural networks (DNNs) for analysis of complex biomedical images shows great promise but is hampered by a lack of large verified data sets for rapid network evolution. Here, we present a novel strategy, termed "mimicry embedding," for rapid application of neural network architecture-based analysis of pathogen imaging data sets. Embedding of a novel host-pathogen data set, such that it mimics a verified data set, enables efficient deep learning using high expressive capacity architectures and seamless architecture switching. We applied this strategy across various microbiological phenotypes, from superresolved viruses to in vitro and in vivo parasitic infections. We demonstrate that mimicry embedding enables efficient and accurate analysis of two- and three-dimensional microscopy data sets. The results suggest that transfer learning from pretrained network data may be a powerful general strategy for analysis of heterogeneous pathogen fluorescence imaging data sets.IMPORTANCE In biology, the use of deep neural networks (DNNs) for analysis of pathogen infection is hampered by a lack of large verified data sets needed for rapid network evolution. Artificial neural networks detect handwritten digits with high precision thanks to large data sets, such as MNIST, that allow nearly unlimited training. Here, we developed a novel strategy we call mimicry embedding, which allows artificial intelligence (AI)-based analysis of variable pathogen-host data sets. We show that deep learning can be used to detect and classify single pathogens based on small differences.


Deep Learning , Host-Pathogen Interactions , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Animals , Artificial Intelligence , Microscopy/methods , Toxoplasma/pathogenicity , Vaccinia virus/pathogenicity , Zebrafish
20.
Sci Data ; 7(1): 265, 2020 08 12.
Article En | MEDLINE | ID: mdl-32788590

Human adenoviruses (HAdVs) are fatal to immuno-suppressed individuals, but no effective anti-HAdV therapy is available. Here, we present a novel image-based high-throughput screening (HTS) platform, which scores the full viral replication cycle from virus entry to dissemination of progeny and second-round infections. We analysed 1,280 small molecular weight compounds of the Prestwick Chemical Library (PCL) for interference with HAdV-C2 infection in a quadruplicate, blinded format, and performed robust image analyses and hit filtering. We present the entire set of the screening data including all images, image analyses and data processing pipelines. The data are made available at the Image Data Resource (IDR, idr0081). Our screen identified Nelfinavir mesylate as an inhibitor of HAdV-C2 multi-round plaque formation, but not single round infection. Nelfinavir has been FDA-approved for anti-retroviral therapy in humans. Our results underscore the power of image-based full cycle infection assays in identifying viral inhibitors with clinical potential.


Adenoviruses, Human/drug effects , Antiviral Agents/pharmacology , Small Molecule Libraries/pharmacology , Adenoviruses, Human/physiology , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Nelfinavir/pharmacology , Virus Replication/drug effects
...